Tuesday, January 27, 2009

Kinds of set

1. Finite set – countable
Example: Sets A, B, C, D are finite sets

2. Infinite set – uncountable
Example: Set E is an infinite set

3. Empty or null set – has no element
Example: A = { }

4. Equal set – set A and set B are equal set if the elements of set A is exactly the element of set B.
Example:
A = {set of an even counting number of one digit} = {2,4,6,8}
B = {set of an integral multiples of two having one digit = {2,4,6,8}

5. Equivalent set – two sets are equivalent if there exists a one-to-one correspondence between elements of the two sets.
Example:
A = {1, 2, 3, 4,5} - x coordinate
B = {6, 7, 8, 9, 10} – y coordinate

then “A” is equivalent to B. We can construct the relation of set A and set B.

{ (1,6}, (2,7), (3,8), (4,4), (5,10) }

6. Subset – set whose elements are members of the given set A = {1,2,3,4,5,8}, B = {2,4,8}

7. Universal Set – totality of the given set with consideration. The set from which we select elements to form A given set is called universal.
Example:
Set A = {1, 2, 3, 4, 5, 8} is a universal set
Set B = {2, 4, 8} is a subset of set A

8. Disjoint Set – sets that has no common element ; if two sets have no element in common, the sets are called disjoint sets.

Friday, January 23, 2009

Methods of Writing Set

Example: Roster Method and Rule Method


Methods of Writing Set

1. Roster or tabular method

The elements of the set are enumerated and separated by comma.

2. Rule method or set builder

A, descriptive phrase is used to describe the elements of the set